ERRATA, VOLUME 24

O. C. HAZLETT, A symbolic theory of formal modular covariants.

Page 299, Theorem III. The proof given is evidently incorrect, inasmuch as a polynomial in the differences of the ratios α_2/α_1 , β_2/β_1 , etc. is not necessarily a polynomial in the symbolic invariants $\alpha_1\beta_2 - \alpha_2\beta_1$, $\alpha_1\gamma_2 - \alpha_2\gamma_1$, etc. On the other hand, Corollary 1 of Theorem III follows at once from Lemma V. For any isobaric formal modular invariant M of a system of forms S which is of degree d_i in the coefficients of f_i and of weight w is identically congruent, modulo p, to $a_0^{d_1}$ multiplied by a linear combination, K, of products of the differences of the type $(\beta_2/\beta_1) - (\alpha_2/\alpha_1)$, where the α 's and β 's may be symbols arising from the same form or may be symbols arising from different forms; moreover, K is homogeneous in the symbols for each form, f_i , and such that each ratio α_2/α_1 for this form occurs in exactly d_i factors in each product, and, finally, K is symmetric, modulo p, in these symbols for each form f_i . Hence, by a well known result of classic invariant theory, any isobaric formal modular invariant of S is congruent, modulo p, to an algebraic invariant, A, of S, although A is not necessarily rational and integral. Then Theorem III follows from Corollary 1, since any algebraic invariant is expressible as a polynomial in the symbolic invariants $\alpha_1\beta_2 - \alpha_2\beta_1$, etc.

OLIVE C. HAZLETT

ERRATA, VOLUME 30

C. R. Adams, On the irregular cases of the linear ordinary difference equation.

Page 526, equation (33). The minus sign between the two fractions should be a multiplication sign.

Page 527, equations (34). The superscript of all the γ 's in these equations should be (n-1).

Page 537. In the display six lines from the bottom of the page, $\gamma_1^{(n-2)}$ should be $\gamma_i^{(n-2)}$.